NMI-lab Current Members

Emre Neftci, Assistant Professor

E-Mail: eneftci@uci.edu

Dr. Emre Neftci received his M.Sc. degree in physics from École Polytechnique Fédérale de Lausanne, Switzerland, and his Ph.D. in 2010 at the Institute of Neuroinformatics at the University of Zürich and ETH Zürich.  Currently, he is an assistant professor
in the Department of Cognitive Sciences and Computer Science at the University of California, Irvine. His current research explores the bridges between neuroscience and machine learning, with a focus on the theoretical and computational modeling of learning algorithms that are best suited to neuromorphic hardware and non-von Neumann computing architectures. 

Dan Barsever, Graduate Student

E-Mail: danbarsever@gmail.com

Dan Barsever received the B.S. degree in Electrical Engineering from University of California, Irvine in 2016.  He is currently a graduate student working in the Neuromorphic Machine Intelligence Lab towards a Ph.D. in Cognitive Sciences with a concentration in Cognitive Neuroscience.  His research interests include brain-computer interfacing, human augmentation, artificial intelligence, and neural modeling.

Travis Bartley, Graduate Student (EECS)

E-Mail: tbartley@uci.edu

Travis Bartley received his BS degree in Electrical and Computer Engineering from The Ohio State University in 2010. From 2010 to 2013, he worked as a research engineer under Professor Kazusuke Maenaka at the University of Hyogo. He then joined the Shuji Tanaka Laboratory at Tohoku University, where he worked as a researcher from 2013 to 2015. During these two appointments, he conducted research on circuits and algorithms for sensor systems. Since 2015, he has been pursuing his MS and PhD degrees in Electrical Engineering and Computer Science at the University of California, Irvine. His current research focuses on architecture and algorithm co-design for computationally efficient neural networks.

Takashi Nagata, Graduate Student (ICS)

E-Mail: takashin@uci.edu

Takashi Nagata received his B.S. degrees in Information science from Tokyo University of Science, Japan, in 2008 and M.S. in 2010 respectively. After graduation, he had 7+ years experience in total as a systems engineer in financial industry and a developer support engineer in a Cloud company where he focused on BigData technologies especially Hadoop and its ecosystem. He joined the Neuromorphic Machine Intelligence Lab at 2017 and has been pursuing PhD degrees in Computer Science. His research interests include Robotics and Machine Learning, especially working memory and reasoning.

Andrew Hansen, Graduate Student

E-Mail: ah1969@brandeis.edu

Andrew Hansen received an M.S. degree in Neuroscience from Brandeis University and a B.S. degree in Physics - Biophysics from St. Mary’s University in San Antonio, Texas. His primary interest is to reverse-engineer cognitive processes in neuromimetic neural networks and to develop robust cognitive models using mathematically defined boundaries, empirically derived metrics, and statistical methodologies. Bilaterally, Andrew is interested in exploring the computational dynamics native to neural circuitry to produce and implement novel, cognition-inspired machine learning algorithms. Andrew's inspiration lies in the profound philosophical conundrum of reconciling qualia with a scientifically coherent and functional theory of consciousness. Andrew holds a diverse background of research experience spanning the applied to the theoretical: from neurobiochemistry and epigenetics to the development of single- and multi-neuron simulations as well as programmatic interfaces for experimental neuroscience protocols. When Andrew isn't busy sciencing, he can be found creating artwork via artificial neural networks as well as a variety of conventional means. Additionally, he enjoys playing blues guitar and venturing outdoors with his fellow scientist and life partner Evelia. 

Yue Yin, Graduate Student (BME)

E-Mail: yyin17@uci.edu

Yue Yin received his B.S. and M.S. degrees from the University of Wisconsin-Madison and Carnegie Mellon University, respectively, both in Biomedical Engineering with a concentration on biomedical signal processing. He worked in industry shortly after undergraduate, some of his projects include automated analyzer to process periodic waveforms (cardiac action potentials, calcium transients, and force contraction) for drug screening on cardiac tissue, 3D engineered heart tissue based high throughput assay system with automatic liquid handling, and computational simulation on iPSC-derived cardiomyocytes to study drug-induced arrhythmia sensitivity. At CMU, he developed instrumented hip implant model to detect loosening using acoustic impedance analysis. Currently, as a member of NMI-lab, his research focuses on artificial neural network and machine learning.

Kenneth Stewart, Graduate Student (ICS)

E-Mail: kennethms@uci.edu

Kenneth Stewart received his B.S. degree in Computer Science and Engineering from Michigan State University in 2017. He is currently pursuing a Ph.D. in Computer Science with a focus in Computational Neuroscience. His current research focuses on developing learning algorithms for neuromorphic hardware and their application to areas such as computer vision and robotics. His research interests include neuromorphic computing, online learning, robotics, artificial intelligence, brain-computer interfaces, and human augmentation.

NMI-lab Alumni

Georgios Detorakis, Postdoctoral Researcher

E-Mail: gdetorak@uci.edu

Georgios Detorakis holds a degree in Applied Mathematics from the University of Crete, a master degree in Brain and Mind Sciences from the University of Crete and he received his PhD in Computational Neuroscience at INRIA and University of Lorraine, France. His thesis focused on modeling the topographic organization of a part of primary somatosensory cortex of monkeys using the theory of neural fields as computational/mathematical framework. As a post-doc researcher at CentraleSupelec (France) and as member of the ANR project "SynchNeuro", he studied the closed-loop deep brain stimulation technique for the treatment of Parkinson's diseade symptoms. He mainly used computational/mathematical models and he conducted analytical work as well collaborating with control theory scientists. Furthermore, he involved in the development of spike sorting software as part of the same project. Finally, he has experience in recording techniques such as EEG and EMG.